SPARSE AND ROBUST LINEAR REGRESSION: AN OPTIMIZATION ALGORITHM AND ITS STATISTICAL PROPERTIES
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust and sparse bridge regression
It is known that when there are heavy-tailed errors or outliers in the response, the least squares methods may fail to produce a reliable estimator. In this paper, we proposed a generalized Huber criterion which is highly flexible and robust for large errors. We applied the new criterion to the bridge regression family, called robust and sparse bridge regression (RSBR). However, to get the RSBR...
متن کاملProperties of Preconditioners for Robust Linear Regression
In this paper, we consider solving the robust linear regression problem by an inexact Newton method and an iteratively reweighted least squares method. We show that each of these methods can be combined with the preconditioned conjugate gradient least square algorithm to solve large, sparse systems of linear equations efficiently. We consider the constant preconditioner and preconditioners base...
متن کاملextraction and acetylation of purified trypsin from bovin pancreas and study of some its physico-chemical properties
آنزیم تریپسین در شرایط قلیایی ناپایدار می باشد .و فعالیت پروتئولیتیکی تریپسین منجربه خود هضمی آن در جایگاههای خاصی می گردد. بنابر این آنزیمی با ناپایداری بالا محسوب میگردد. در سالهای اخیر موفق شدند که با ایجاد تغیرات شیمیایی با اضافه کردن فلزات خاص ، کلسیم و یا عمل استیلاسیون منجر به افزایش پایداری آنزیم تریپسین گردند. مطالعات در حال حاضر نشان می دهد که تریپسین استیله شده فعالیت آنزیمی خود را ...
15 صفحه اولConditional Sparse Linear Regression
Machine learning and statistics typically focus on building models that capture the vast majority of the data, possibly ignoring a small subset of data as “noise” or “outliers.” By contrast, here we consider the problem of jointly identifying a significant (but perhaps small) segment of a population in which there is a highly sparse linear regression fit, together with the coefficients for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2018
ISSN: 1017-0405
DOI: 10.5705/ss.202015.0179